MASPECTRAS Users Guide

1. General Information:

This will be your first impression of MASPECTRAS.

The main view is divided into 3 sections:

- The header section consists of some images on the top, of one bar concerning the display and one bar concerning the AAS(Authentication and Authorization System)
- 2. The left side bar contains the menu

3. The centre frame contains the displayable information

1.1 The header section:

1.1.1 The display bar:

The "Home"-link leads you back to the start page.

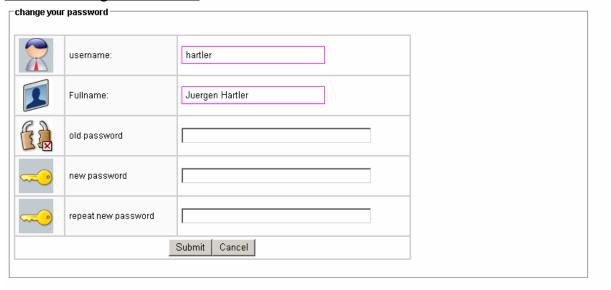
At the right side there are 3 icons where you can change the spatial usage of the browser window:

- : brings the window back to the normal size (default setting)
- : with this link you can use the full width of your screen for displaying the information section
- : uses the full width of the window and the images at the header section disappear, only the display bar and the AAS bar will stay.

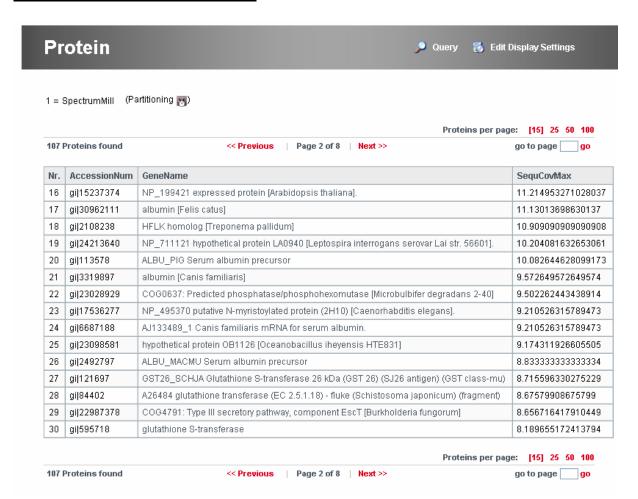
1.1.2 The display bar:

If you are not logged in:

gives the possibility to log in


If you are logged in:

gives the possibility to:

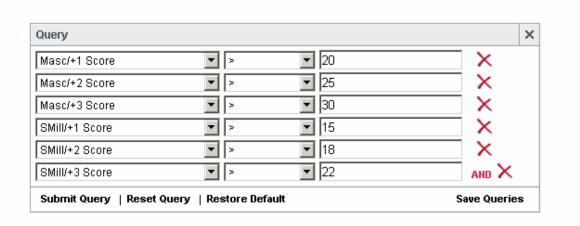

- Log out
- Show detailed information about your user account
- Change your password
- Displays your user

1.1.2.1 Change Password:

You must enter your old password and repeat the new one two times. The password must have at least 8 characters. One character must be a number and one character must be special character (!"@=?...).

1.2 The information section:

The general presentation of the data in MASPECTRAS looks like in the figure above.


In the header section there are 2 links:

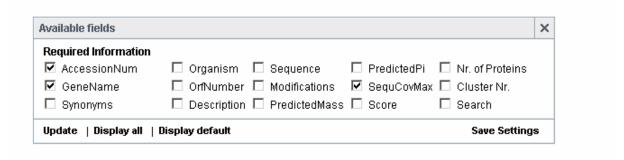
- Customizable queries
- Customizable display

The table with the data is always enclosed by the bars for the scrolling and almost every column in the table is sortable.

If you come from another page, at the bottom of the page, there is a return button, which brings you to page you have visited before.

1.2.1 Customizable queries:

The query box enables the combination of as many queries as you like. The queries can be added or removed. The operators "LIKE" and "NOT LIKE" need a preceding or trailing asterisk


The button "Submit Query" submits the entered query and changes the view on the data correspondingly.

"Reset Query" removes all entered queries and submits a query without any user-defined restrictions.

Restore Default" submits a set of queries which have been saved.

"Save Queries" saves the actually entered set of queries to the database and submits them. If one set of queries is saved your data on that page will always be filtered with this set by default (unless you change the queries).

1.2.2 Customizable display:

The information that will be displayed on the screen is customizable to the needs of the end-user. The user can select the information by clicking on the checkboxes and update the view on the data by pressing the button "Update".

"Save Settings" allows the user to store his own display settings. Whenever the user enters the same page his settings will be displayed by default.

1.2.3 Scrolling bar:

On the left the scrolling bar indicates the number of elements that have been found (depending on the query the user submitted). In the centre section the total number of pages with the actual page is displayed, plus the two arrows to go to next or the previous page. In the centre section the actual page is displayed and it is possible to switch to the previous and the next page. On the right you can choose how many proteins you prefer to be shown on one page. You can also jump to any page you like. (At the right side you can define the size of your page by your own and you can enter the page number and push the "go" button to jump to your desired page.)

Nr.	ID	Upload Name	Category	Added Date				
1	2650	casein_NL_MS3	xcalibur	2005-06-29	<u>a</u>	**	<u>88</u>	×
2	2700	Task1ms22400-3601	sequest	2005-07-06	ã	**	<u>88</u>	×
3	2600	testBigMascot	mascot	2005-06-21	ã	6	<u>88</u>	×
4	2850	newMascot	mascot	2005-08-04	ã	**	<u>88</u>	×
5	2001	karIDB	synthDatabase	2005-06-07	ã	**	<u>88</u>	×
6	2002	kPEP_phospho_BSA	synthDatabase	2005-06-07	ã	**	<u>88</u>	×
7	2003	myTestDB	synthDatabase	2005-06-07	ã	***	<u>83</u>	×
8	2004	SynthDB	synthDatabase	2005-06-07	<u>a</u>	**	<u>88</u>	×
9	2005	SynthPep	synthDatabase	2005-06-07	<u>a</u>	**	<u>88</u>	×
10	2006	SpectrumMill	spectrummill	2005-06-07	ã	***	<u>88</u>	×
11	2007	Task1ms22400-3600	sequest	2005-06-07	<u>a</u>	**	<u>88</u>	×
12	2009	Task2synthDBAII	sequest	2005-06-07	<u>a</u>	**	<u>88</u>	×
13	2010	Task2testKarlDB2	sequest	2005-06-07	ã	*	<u>88</u>	×
14	2011	Task2CompToMasc	sequest	2005-06-07	ã	*	<u>88</u>	×
15	2012	MSDB	mascot	2005-06-07	ã	**	<u>88</u>	×

The table view consists by default out of the following parts:

- The header: if you hover your mouse above the column-name and the colour changes to blue, you can sort by this column
- The number in the first column indicates the hit number of the entry corresponding to the order you sorted your data
- Links to data connected to the entries are normally located on entries in the list
- 📋 : Indicates that you can edit your data here.
- Tildicates if there is some information downloadable

- X: Indicates if you can delete this data entry here.
- **(iii)** Indicates that there is additional information available
- Signature : Indicates that you can share your data to other users of the system

When you click on the share icon you move to a page where you can select other users or institutes and make the data available to them:

Sharing

You are about to share item: quantTestJune2006

Name	E-Mail	
Institute for Genomics and Bioinformatics	zlatko.trajanoski@tugraz.at	an ×□
Institue of Pathology, University of Graz	karin.wagner@klinikum-graz.at	an ×□
Inserm U255	jerome@irgendwas.fr	an ×□
Visitors	none	an ×□
Ludwig Boltzmann Institut	gudrun.gann@klinikum-graz.at	an ×□
ARC Seibersdorf	dieter.kopecky@arcsmed.at	an ×□
💹 Sandoz GmbH	thomas.specht@sandoz.com	an ×□
↓ LM.P.	Karl.Mechtler@imp.univie.ac.at	an ×□
Institute of Molecular Biotechnology	Helmut.Schwab@tugraz.at	an ×□
Institut fuer Chemie	Christoph.Kratky@uni-graz.at	an ×□
Aging Research	guenter.lepperdinger@oeaw.ac.at	an ×□
Information Design Department, FH JOANNEUM	informations-design@fh-joanneum.at	an ×□
Dept. Immunology, School of Pathology	none	≝ ⊏ X ⊏
Biocenter, Innsbruck	Zellbiologie@i-med.ac.at	≝ ⊓ X □
Department for Specialized Gynaecology	teresa.wagner@akh-wien.ac.at	an X⊏
Oridis BioMed	info@oridis-biomed.com	≝⊓ X⊓

Name	Full Name	E-Mail	
🔛 hartler	Juergen Hartler	juergen.hartler@tugraz.at	
ध testmaspectras	Test Maspectras	juergen.hartler@tugraz.at	
ध stocker	Gernot Stocker	gernot.stocker@tugraz.at	≝ ⊓ × ⊓
ध mechtler	Karl Mechtler	Karl.Mechtler@imp.univie.ac.at	an X⊏

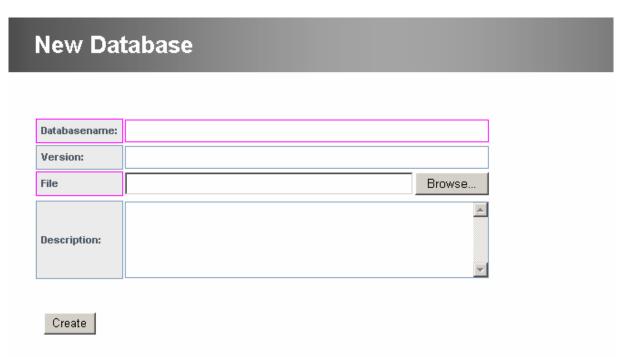
When you select a user or an institute the checkboxes at and and are enabled here you can additionally specify if the user has edit or delete rights on your data.

1.2.4 Select input Fields:

When you have an input field like this one:



When your element of choice is not in the drop down menu, you can push the blue button and enter your element. The button can lead either to an input page of an element or to add dictionary elements. Dictionary elements are unified text elements. The main purpose is to overcome words with different spellings (or different level of detail in description) but the same meaning. For more detailed information about Dictionaries, see chapter 2.5 "Dictionary".

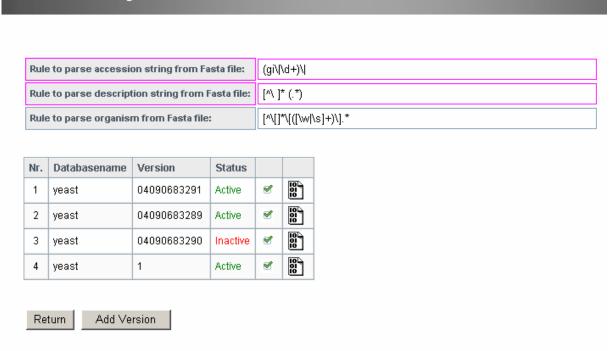

2. Management Section:

2.1 Database:

By clicking Management-> Database in the menu-bar you reach the general Database Section. MASPECTRAS needs the original sequence databases to find out the corresponding protein sequence.

With the "Add Database" you can add a new database.

When you select a file the fields databasename and version are filled out automatically. When you enter no version the version is set to 1 automatically.


With the "Find All Databases" you get an overview of all your databases.

Database

When you have created a database or pushed the button you get to the detailed view of your database:

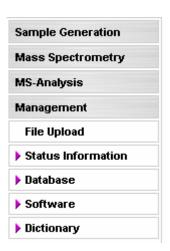
Database yeast

At the top you can define your parsing rules for the accession string, the description string and the organism string. The accession rule and the description rule are mandatory. With the green checkbox you can test your parsing rules and you get the output of the first 10 entries at the bottom of this page:

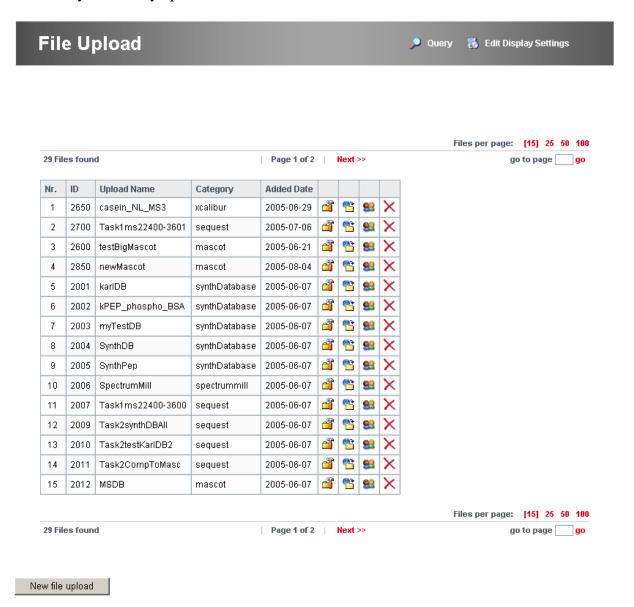
```
MRSYSNPENGGOINDNINYSEKRPTMLPENLSLSNYDMDSFLGOFPSDNNMOLPHSTYEOHLOGEOONPTNPNYFPPEFD
ENKVDWKQEKPRPDAPSFADNNSFDNVNSSKLTNPSPVQPNIVKSESEPANSKQNEVVEATSVEKAKENVAHESGTPESG
{\tt GSTSAPKSKKQRLTADQLAYLLREFSKDTNPPPAIREKIGRELNIPERSVTIWFQNRRAKSKLISRRQEEERQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQRILREQ
ELDSLNQKVSQAFAHEVLSTSPTSPYVGGIAANRQYANTLLPKPTRKTGNFYMKSGPMQSSMEPCIAESDIPIRQSLSST
YYNSLSPNAVPVSSQRKYSASSYSAIPNAMSVSNQAFDVESPPSSYATPLTGIRMPQPESDLYSYPREVSPSSGGYRMFG
HSKPSSYKASGPVRPPNMATGHMRTSSEPTSYDSEFYYFSCTLLVIGLWKRLRASPODLMCFYSPPKKLFAYLIOFOGIO
YRIEYSFFVIESIHVFRVEEPLLNELSATASSRDKPAPNEYWLQMDIQLSVPPVFHMITSEGQGNCTDFTEGNQASEVLL
{\tt HSLMGRATSMFQMLDRVRRASPELGSVIRLQKGLNPHQFLDPQWANQLPRQPDSSVFDHQGRNPPIQGLSHDTSSEYGNK}
SQFKRLRSTSTPARQDLAQHLLPPKTNTEGLMHAQSVSPITQAMKSANVLEGSSTRLNSYEPSVSSAYPHHNLALNLDNT
QFGELGTSNISYPLSAPSDVGSLPRASNSPSRPVMHPNTQGINTEIKDMAAQFPNSQTGGLTPNSWSMNTNVSVPFTTQN
REFGGIGSSSISTTMNAPSOOLSOVPFGDVSLATENSVPSYGFEVPSEESVYAOARTNSSVSAGVAPRLFIOTPSIPLAS
SAGQDSNLIEKSSSGGVYASQPGASGYLSHDQSGSPFEDVYSPSAGIDFQKLRGQQFSPDMQ
Rule accession_rule: gi|19114688,gi|1723488,gi|7490714,gi|1213267,
Rule description_rule: hypothetical homeobox domain protein [Schizosaccharomyces pombe], Hypothetical protein C32A Rule organism rule: Schizosaccharomyces pombe, null, null, Schizosaccharomyces pombe,
Complete Entry:
>gi|496693|emb|CAA56020.1| B-127 protein [Saccharomyces cerevisiae]
MPFSFLAOPFPPCKISSTHSLGVNSPGRGSHGNLNVFWYKLSISGLIEEDIVVDSPGFVVISLLLWLVEVGDLILVLFPV
AFVPGFATVVPIPLKLENVFLGDIWFVVDVGLDSSDVLSSIVFIPGL
Rule accession rule: qi|496693
Rule description rule: B-127 protein [Saccharomyces cerevisiae]
Rule organism_rule: Saccharomyces cerevisiae
>gi|6323056|ref|NP_013128.1| AICAR transformylase/IMP cyclohydrolase; Ade16p [Saccharomyces cerevisiae]Ogi|170991
MGKYTKTATLSVYDKTGLLDLAKGLVENNVRTLASGGTANMVREAGEPVDDVSSTTHAPEMLGGRVKTLHPAVHAGTLAR
NLEGDEKDLKEQHIDKVDFVVCNLYPFKETVAKIGVTVQEAVEEIDIGGVTLLRAAAKNHSRVTILSDPNDYSIFLQDLS
KDGEISQDLRNRFALKAFEHTADYDAAISDFFRKQYSEGKAQLPLRYGCNPHQRPAQAYITQQEELPFKVLCGTPGYINL
{\tt LDALNSWPLVKELSASLNLPAAASFKHVSPAGAAVGLPLSDVERQVYFVNDMEDLSPLACAYARARGADRMSSFGDFIAL}
SNIVDVATAKIISKEVSDGVIAPGYEPEALNILSKKKNGKYCILQIDPNYVPGQMESREVFGVTLQQKRNDAIINQSTFK
EIVSKNKALTEOAVIDLTVATLVLKYTOSNSVCYAKNGMVVGLGAGOOSRIHCTRLAGDKTDNUULROHPKVLNMKWAKG
IKRADKSNAIDLFVTGQRIEGPEKVDYESKFEEVPEPFTKEERLEWLSKLNNVSLSSDAFFPFPDNVYRAVQSGVKFITA
PSGSVMDKVVFOAADSFDIVYVENPIRLFHH
Rule accession_rule: gi|6323056,gi|1709914,gi|7433574,gi|1480728,gi|2204263,
Rule description rule: AICAR transformylase/IMP cyclohydrolase; Ade16p [Saccharomyces cerevisiae], Bifunctional pu
Rule organism rule: Saccharomyces cerevisiae, null, null, Saccharomyces cerevisiae,
```

First you get the complete database entry. At "Rule accession_rule:" you get your returned accession strings. If there are multiple ones for one entry they are always separated by ",". It is mandatory that the accession string that you see here is the same like in your result files because this one is used for the indexing. At "Rule description_rule" you get the description of your protein. At "Rule organism_rule:" you get the result of your organism rule. If there is a "null" within the string, than this rule didn't return anything (happens sometimes, when there are no organisms declared). When you are content with your result push the button to index your database.

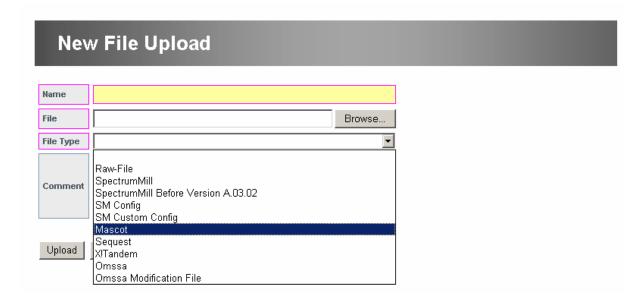
The database can have the following stati:


Active : The database is active and can be used for file parsing.

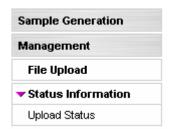
: This database is indexing. (This page is not refreshed automatically at the moment, you have to go by hand to this page to see if it is already active)


lnactive : The database has not been indexed or something at the indexing has gone wrong

It is not mandatory to keep all the versions of your databases. Once a search result file has been parsed into MASPECTRAS it stays conserved and does not need the old database again. The database section should be reserved to an administrator of MASPECTRAS, because when the definition string is change in a running instance, you have to be aware that there are maybe pending data uploads which need information with the old settings. Once the data is uploaded into MASPECTRAS there is no need to keep the old database, the whole sequence is stored within MASPECTRAS.


2.2 File Upload:

By clicking Management->FileUpload in the menu-bar you reach the general Upload Section, where all your already uploaded files are listed:


With "New file upload" you come to the upload page:

The important thing is that you have to add your file to the corresponding category. The Sequest-Files and SpectrumMill-Files must be uploaded in a *.zip directory. Spectrum Mill is differentiated in "Spectrum Mill" (new version) and "Spectrum Mill Before Version A.03.02" (old version). For the new version a SM Config File (your smconfig.xml file) is necessary. The SM Custom Config (your smconfig.custom.xml) is not mandatory, only when you searched with modifications and elements which you created by yourself. For OMSSA searches the Omssa Modification File (mods.xml) is needed. As "Raw-File" mzXML, mzData and XCalibur Version 1.3 RAW is accepted.

2.3 Upload Status:

By clicking Management->Status Information->Upload Status in the menu-bar you reach the general Upload Status Section.

This page gives information about the progress of tasks, which are processed asynchronously because of their time consume.

Upload Status ID **Upload Name** Status Step Progress in % 11850 testKarl1 LOADING FINISHED 100 % 11851 testKarl22 LOADING FINISHED 100 % 11852 testKarl23 LOADING FINISHED 100 % 11951 F001244 LOADING FINISHED 100 % 12050 E001276 LOADING FINISHED 100 % 13000 Task1ms22400-3600 LOADING FINISHED 100 % 100 % 13300 SpectrumMill LOADING FINISHED LOADING FINISHED 13301 MascotCompSpectrMill 100 % 13400 BSA_500fmoIH6-1000fmoID6 LOADING FINISHED 100 % 13550 CompToSequest LOADING FINISHED 100 % 14250 Task2synthDBAII LOADING FINISHED 100 % Task2testKarlDB2 LOADING FINISHED 100 % 14350 14450 newMascot LOADING FINISHED 100 % LOADING FINISHED 100 % 14750 MSDB 14850 Task2CompToMasc LOADING FINISHED 100 % Update Interval [m:ss] 0:30 Set timer

Select All

Delete Selected


Select Finished

2.4 Software:

By clicking Management->Software in the menu-bar you reach the general Software Section.

Invert Selection

Select Failures

The general software section is used to document all the software used in MASPECTRAS. Here you can get an overview about the software and edit them. When the software is needed in a select box in another table you can add new software from this point directly (e.g. see chapter 5.5 "Controlsoftware").

With the "Add Software" you can add a new software.

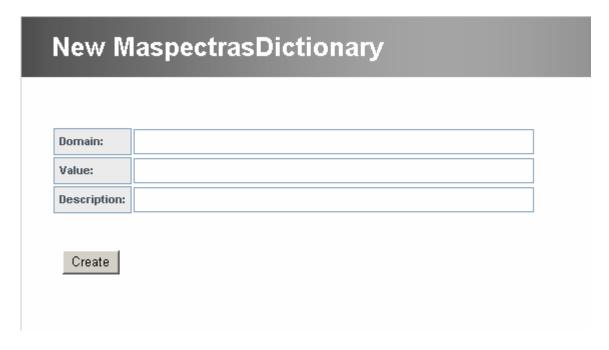
Name: Version: DateOfRelease: Role: Upgrades Upgrades

With the link "Add Upgrade" you can enter software upgrades.

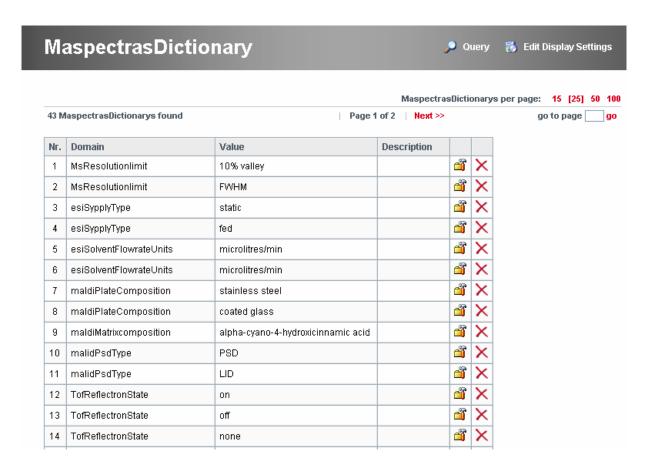
With the "Find All Softwares" you get an overview of all your general softwares.

2.5 Dictionary:

Add Upgrade


Create

By clicking Management->Dictionary in the menu-bar you reach the general dictionary section.



The dictionary section stores commonly used values for certain input fields. Here are you can add, edit and change dictionary values from all domains, while when you are in another table you can only select an existing dictionary field and add values for this certain domain.

With the "Add Dictionary" you can add a new dictionary entry.

By clicking the "Find All Dictionarys" you will get an overview of all your dictionaries.

3. Sample Description:

3.1 Experiment:

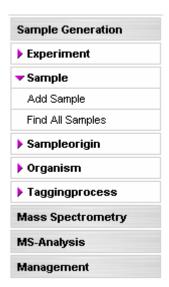
By clicking Sample Generation->Experiment you reach the experiment section.

With the "Add Experiment" you can add new experiments.

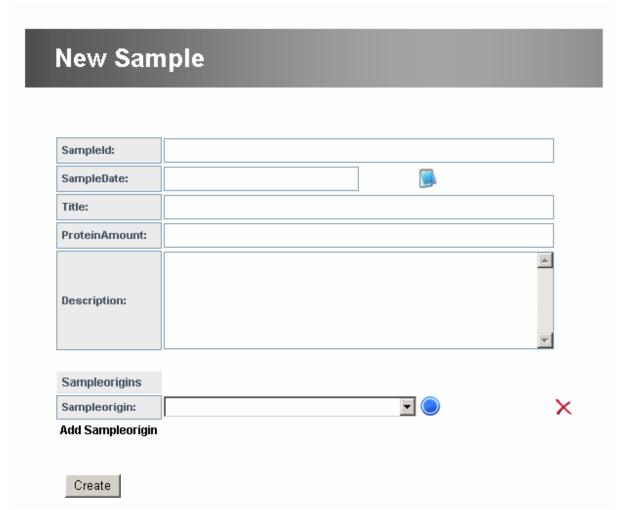
New Experiment

Hypothesis:	
MethodCitations:	
ResultCitations:	
Title:	
Description:	
Create	

With the "Find All Experiments" you get an overview of all your experiments.


3.2 Sample:

There are 2 ways to generate your sample:

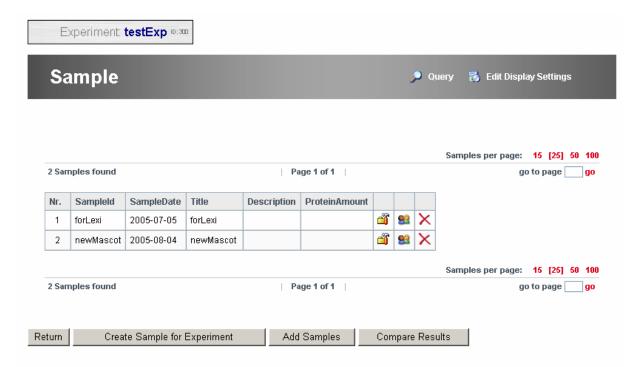

3.2.1 Sample directly:

Here it works in the same way like in the experiment.

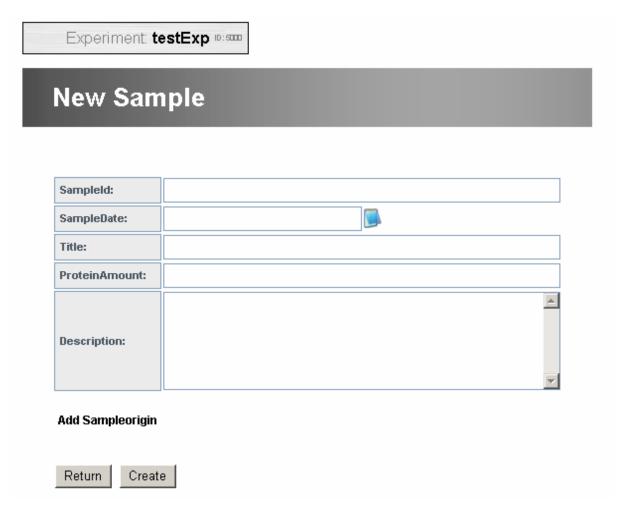
By clicking Sample Generation->Sample you reach the sample section.

With the "Add Sample" you can add a new sample:

With the link on "Add Sampleorigin" you can add additional origins to the sample. If your desired sample origin is not in the list you can add it directly with the blue button on the right side of the select field. Read more about sample origins in chapter 3.3 "Sampleorgin".


With a click on the button "Find All Samples" you get an overview of all your samples:

3.2.2 Sample over experiment:



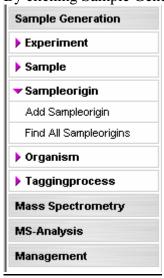
When you click on the title of your experiment where you are interested in then you get an overview of all your samples which has been added to this experiment.



With the link at the top of the page (in this case "testExp") you will get back to this page when you are in a lower level of the program.

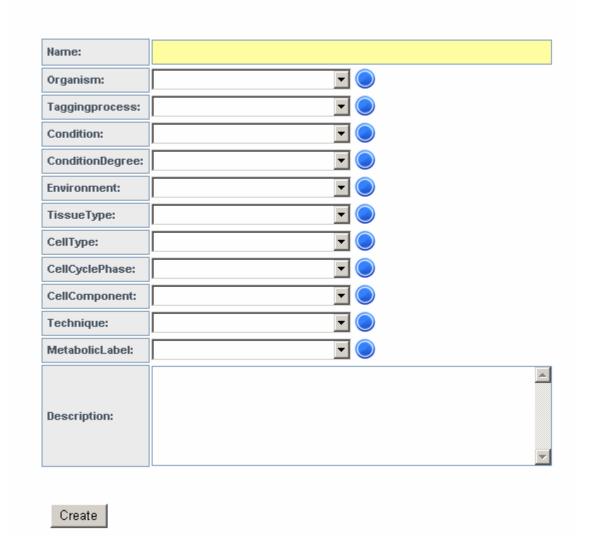
When you push the "Create Sample for Experiment" button you can generate a new sample and it will be added directly to the experiment.

When you use the "Add Samples" button you can add or remove existing samples to or from your experiment.



On the left side the addable samples are listed and on the right side the already added samples are listed. The left side is completely queryable. When you want to add samples you simply check the desired checkboxes of the samples on the left side and push the ">>" button. When you want to remove samples you simply check the desired checkboxes of the samples on the right side and push the "<<" button.

The meaning of the "Compare Results" button will be explained in the Analysis section (4).


3.3 Sampleorigin:

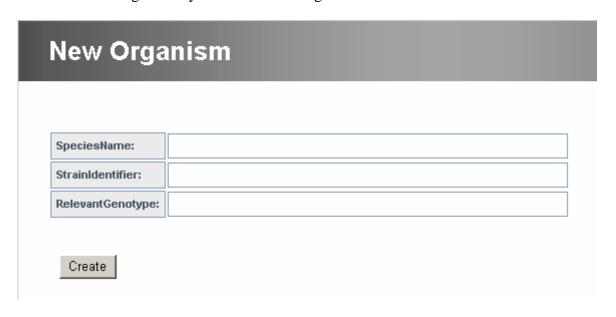
By clicking Sample Generation->Sampleorgin you reach the sample origin section.

With the "Add Samplorigin" you can add new sample origins.

New Sampleorigin


If your desired organism or tagging process is not in the list you can add it directly with the blue button on the right side of the select field. Read more about organisms in chapter 3.4 "Organism" and about tagging processes in chapter 3.5 "Taggingprocess".

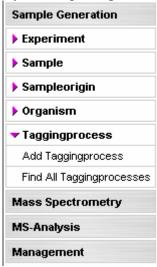
With a click on the button "Find All Sampleorigins" you get an overview of all your sample origins:



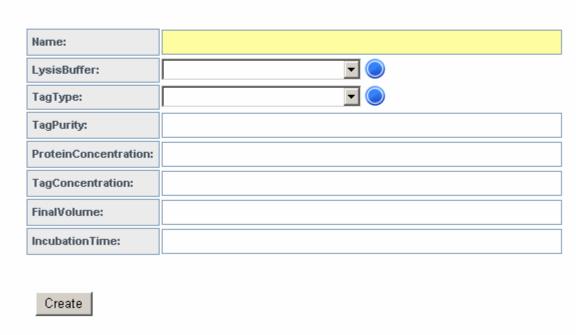
3.4 Organism:

By clicking Sample Generation->Organism you reach organism section.

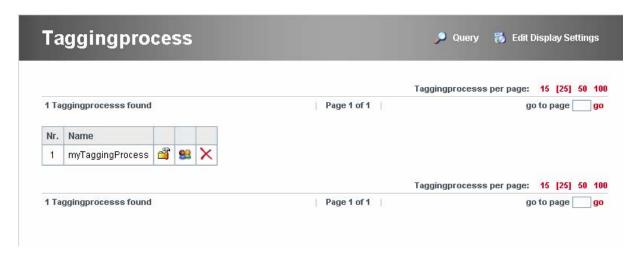
With the "Add Organism" you can add new organisms.



With a click on the button "Find All Organisms" you get an overview of all your organisms:


3.5 Taggingprocess:

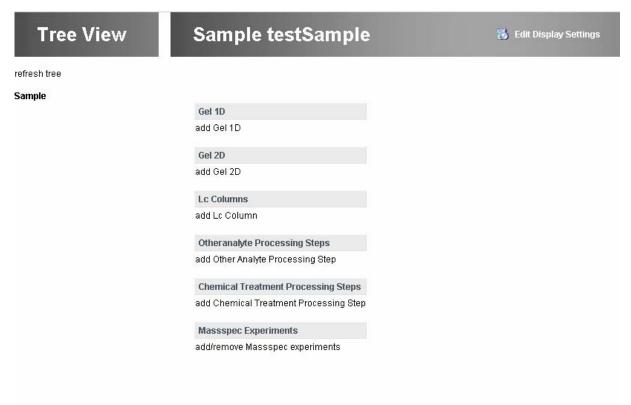
By clicking Sample Generation->Taggingprocess you reach tagging process section.



With the "Add Taggingprocess" you can add new tagging process.

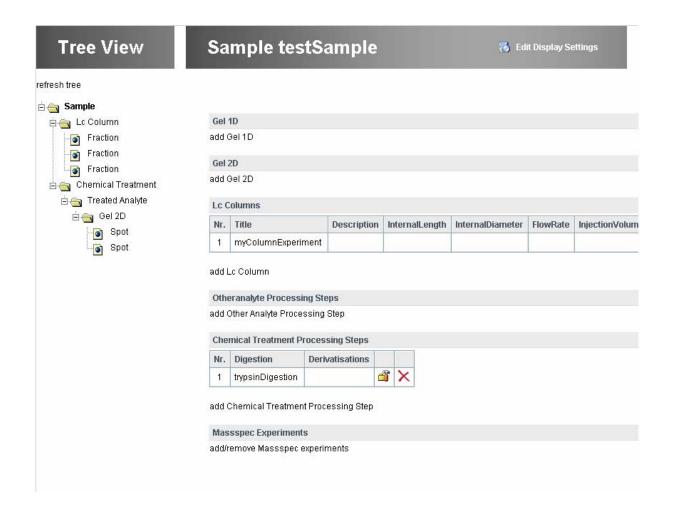
New Taggingprocess

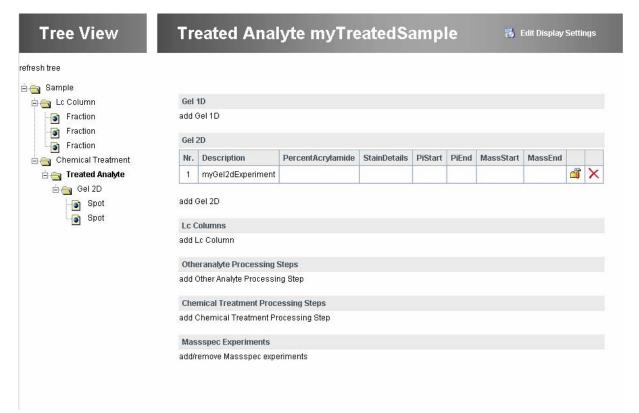
With a click on the button "Find All Taggingprocesses" you get an overview of all your tagging processes:



4. Sample Preprocessing:

Here, information about the preparation steps of a sample can be entered. First, you have to click on "Sample Generation->Sample->Find All Samples" and you get an overview of all your samples:

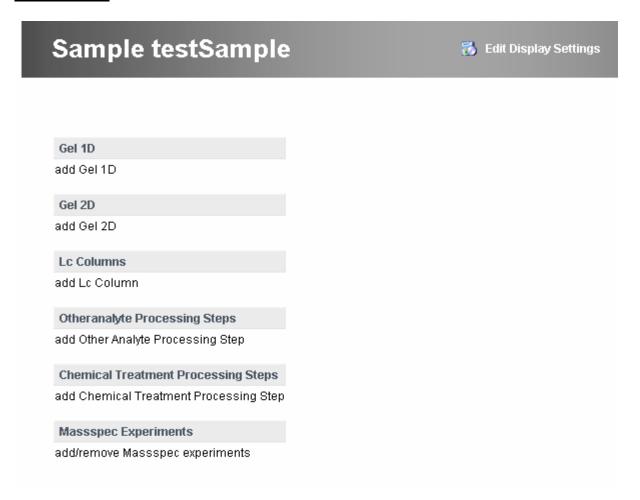

When you click on the name for "sampleId" in the corresponding column you want to get more information you reach the sample processing part. When you have a sample with no entries you will get the following page:


On the left side there should be a tree but now only the root element is there the sample. If you have entered values the page could look like the following:

The page split into two parts the tree view (see chapter 4.1 "Tree View") and the information view where you can display and edit your data. You can arbitrarily manage your preparation steps here. E.g. you have a sample. With one half you run it over an LC-Column, and you got 3 Fraction which are interesting, and the other half was first digested with trypsin, you got one treated analyte, and with this one you made a 2D-Gel where you got a 2 interesting spots. Than the tree would look like the following:

That means you can illustrate any splitting and any consecutive treatment. Regardless of the separation method you choose the organization is always the same. First you have a page where you can enter information about the separation method itself. When you entered it once you can add with the edit option an arbitrary number of analytes. When you click on one of these analytes you will get again to a page where you can choose again between different analyte processing methods:

There are 5 different processing methods. A Gel1D leads to band (for detailed information see chapter 4.2 Gel1D), a Gel2D leads to a spot (for detailed information see chapter 4.3 Gel2D), a LC-Column leads to a Fraction (for detailed information see chapter 4.4 LC-Column), a Chemical Treatment leads to a Treated Analyte (for detailed information see chapter 4.5 Chemical Treatment), and a Other Analyte Processing Step (for detailed information see chapter 4.6 Other Analyte Processing Step) leads to an Other Analyte. For all of the analytes Massspec experiments can be add (for detailed information about the adding see chapter 4.7 "Adding of Massspec experiments"). How you generate an Massspec Experiment see chapter 6.1 "Mass spectrometry experiment".


4.1 Tree view:

In the tree view the cross linking of the data is displayed graphically. In the tree itself always the types of the analyte processing steps and the analytes are displayed. When you want to know the name of the element you have to hover your mouse over the element a tool tip with the name will appear.

Tree View refresh tree Sample Lc Column FramyColumnExperiment Fraction Fraction Chemical Treatment Gel 2D Spot Spot

When you click on an element information about this element will be displayed. When you enter information on the right side the tree won't be updated automatically. For an update press the refresh tree.

4.2 Gel1D:

When you are in the page of a sample or an analyte you can add a Gel1D with the link "add Gel 1D". When you added a Gel1D you will be redirected to the previous page with the added Gel1D.

When you click on the description name or on the edit button you will be directed to same page like the create page again.

Edit Gel1D

D				-O-14 D					
	cription:		my	/Gel1D					-
Raw	ılmage:								
Soft	wareVersi	on:							
War	pedlmage:								
War	pingMap:								
Per	centAcrylar	nide:							
Stai	nDetails:								
Prot	teinAssay:								
InGe	elDigestion	:							
Bacl	kground:								
Pixe	elSizeX:								
Pixe	:ISizeY:								
Den	aturingAge	ent:							
Mas	sStart:								
Mas	sEnd:								
Raw	ImageDes	cription:							
Equ	ipment:				▼				
Gell	Manufactur	ег:			▼				
Acry	ylamideBis	acrylamideRati	o:						
	odate Band								
Nr.	Title	Description	Агеа	Intensity	LocalBackground	Annotation	Normalisation		
1	myBand							ã	×

Additionally to the create page the link "add Band" for adding bands and a list with added bands will be displayed.

New Band

Area: Intensity: LocalBackground: Annotation: AnnotationSource: Volume: Normalisation:	
LocalBackground: Annotation: AnnotationSource: Volume:	
Annotation: AnnotationSource: Volume:	
AnnotationSource: Volume:	
Volume:	
Normalisation:	
normalisation.	
NormalisedVolume:	
LaneNumber:	
ApparentMass:	
Gel1D:	
Description:	
LocalisationItemType:	

When you click in the band on the edit or delete button you reach this "create" page again and you can make your changes, but when click on the title of the band (in this case "myBand") you reach again the page where you can add additional preparation steps or mass spectrometry experiments to the band.


4.3 Gel2D:

Sample testSample

When you are in the page of a sample or an analyte you can add a Gel2D with the link "add Gel 2D". When you added a Gel2D you will be redirected to the previous page with the added Gel2D.

When you click on the description name or on the edit button you will be directed to same page like the create page again.

Descript	ion:	my	Gel2d							
Rawlmag	ge:									
Software	eVersion:									
Warpedl	mage:									
Warping	Мар:									
Percent	Acrylamide:									
StainDet	ails:									
ProteinA	Assay:									
InGelDig	estion:									
Backgro	und:									
PixelSize	eX:									
PixelSize	eY:									
PiStart:										
PiEnd:										
MassSta	art:									
MassEnd	d:									
Rawlmag	geDescription:									
Equipme	ent:				v					
GelManu	ıfacturer:				-					
Acrylam	ideBisacrylamideF	Ratio:								
add Spot										
	1		-	I IDII					0 0	
Title	ApparentMass	Intensity	Area	LocalBackground	Annotation	AnnotationSource	Normalisation	Description		

Additionally to the create page the link "add Spot" for adding spots and a list with added spots will be displayed.


New Spot

Title:	
ApparentPi:	
ApparentMass:	
Intensity:	
Area:	
LocalBackground:	
Annotation:	
AnnotationSource:	
Volume:	
Normalisation:	
NormalisedVolume:	
Gel2D:	
Description:	
LocalisationItemType:	
Create	

When you click in the spot on the edit or delete button you reach this "create" page again and you can make your changes, but when click on the title of the band (in this case "mySpot") you reach the page where you can add additional preparation steps or mass spectrometry experiments to the spot.

4.4 LC-Column:

Sample testSample

When you are in the page of a sample or an analyte you can add LC-Column with the link "add Lc Column". When you added an LC-Column you will be redirected to the previous page with the added LC-Column.

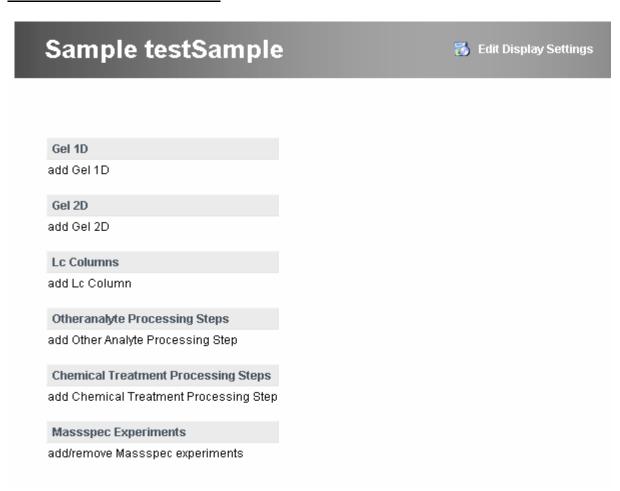
add Lc Column

When you click on the title name or on the edit button you will be directed to same page like the create page again.

Show LcColumn

Title:	myColumnExperiment
Description:	
Manufacturer:	
PartNumber:	
BatchNumber:	
InternalLength:	
InternalDiameter:	
StationaryPhase:	
BeadSize:	
PoreSize:	
Temperature:	
FlowRate:	
InjectionVolume:	
ParametersFile:	

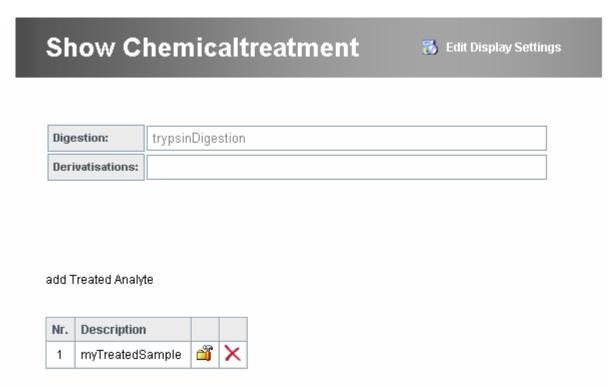
add Fraction

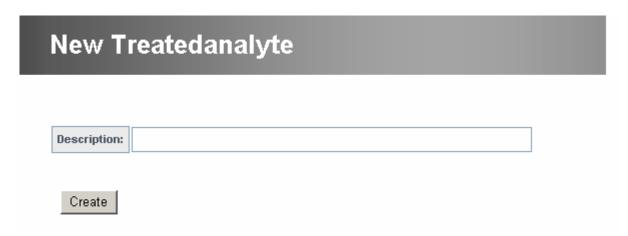

Nr.	FractionId	StartPoint	EndPoint	ProteinAssay		
1	firstFraction				ã	×

Additionally to the create page the link "add Fraction" for adding fractions and a list with added fractions will be displayed.

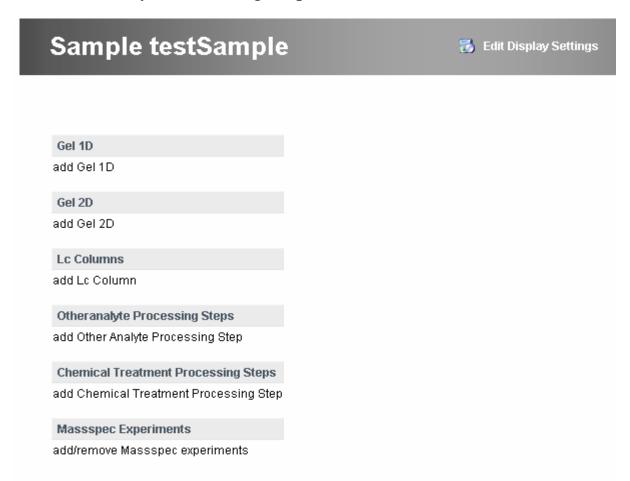
FractionId:			
StartPoint:			
EndPoint:			
ProteinAssay:			

When you click in the fraction on the edit or delete button you reach this "create" page again and you can make your changes, but when click on the title of the fractionId (in this case "firstFraction") you reach the page where you can add additional preparation steps or mass spectrometry experiments to the fraction.


4.5 Chemical Treatment:

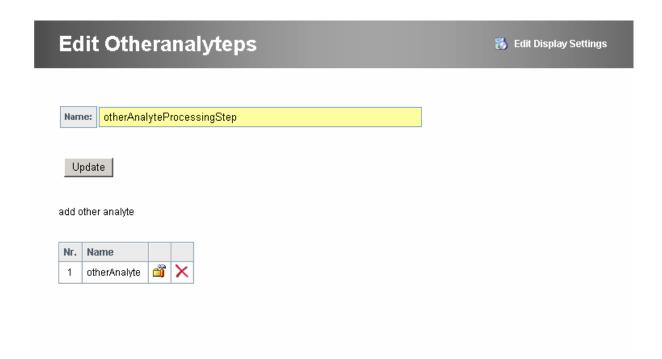

When you are in the page of a sample or an analyte you can add chemical treatmens with the link "add Chemical Treatment Processing Step". When you added a chemical treatment you will be redirected to the previous page with the added chemical treatment.

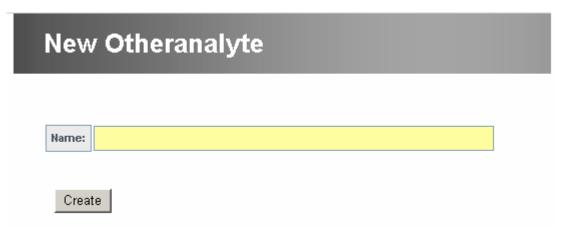
When you click on the digestion name or on the edit button you will be directed to same page like the create page again.



Additionally to the create page the link "add Treated Analyte" for adding treated analytes and a list with added treated analytes will be displayed.

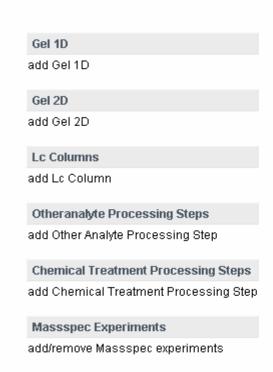
When you click in the treated analyte on the edit or delete button you reach this "create" page again and you can make your changes, but when click on the name of the description (in this case "myTreatedSample") you reach the page where you can add additional preparation steps or mass spectrometry experiments to the treated analyte.


4.6 Other Analyte Processing Step:

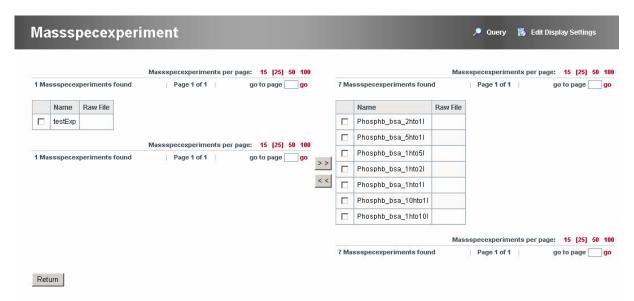

When you are in the page of a sample or an analyte you can add other analyte processing steps with the link "add Other Analyte Processing Step". When you added an other analyte processing step you will be redirected to the previous page with the added other analyte processing step.

When you click on the name or on the edit button you will be directed to same page like the create page again.

Additionally to the create page the link "add other analyte" for adding other analytes and a list with added other analytes will be displayed.

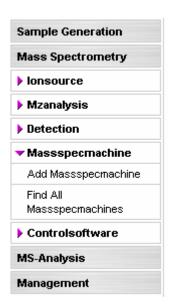


When you click in the other analyte on the edit or delete button you reach this "create" page again and you can make your changes, but when click on the name (in this case "otherAnalyte") you reach the page where you can add additional preparation steps or mass spectrometry experiments to the otherAnalyte.


4.7 Adding of Massspec experiments

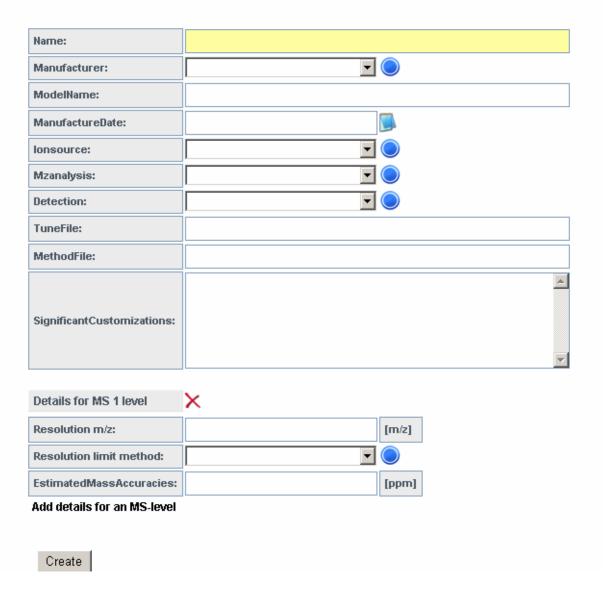
Sample testSample

When you added some mass spectrometry experiments, there is a direct link on the title of the mass spectrometry experiment to the mass spectrometry experiment. When you are in the page of a sample or an analyte you can add other mass spectrometry experiments the link "add/remove Massspec experiments".


The adding of the massspec experiments to an analyte works the same way like the adding of samples to experiments (see chapter 3.2.2). The only difference is that here are only mass spectrometry experiments are displayed on the left side, which are not already added to an analyte, while the sample can be added to several experiments. For detailed information how to create mass spectrometry experiments 6.1 "Mass spectrometry experiment".

5. Mass Spectrometry:

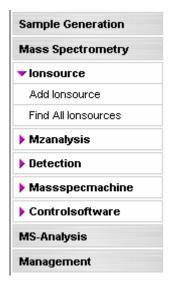
This section is about to describes machine and software settings for the mass spectrometry experiment.


5.1 Mass Spectrometry Machine:

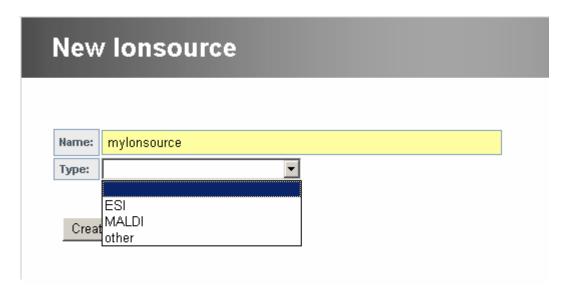
The main part of this section is the mass spectrometry and the other parts (except "Controlsoftware" see chapter 5.5 "Control Software") are only linked to this part. There are two ways how to reach this part. The first one is over the link in the create/edit page of the mass spectrometry experiment (see chapter 6.1 "Mass spectrometry experiment"), the second one is by clicking Mass Spectrometry->Massspecmachine.

With the "Add Massspecmachine" you can add new mass spectrometry machines.

New Massspecmachine

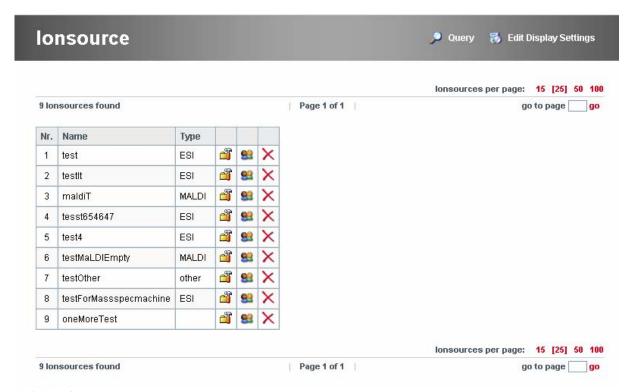


If your desired ionsource,mz analysis or detection is not in the list you can add it directly with the blue button on the right side of the select field. Read more about organisms in chapter 5.2 "Ionsource", about mz analysis in chapter 5.3 "Mzanalysis" and about detection in chapter 5.4 "Detection". With the link on "Add details for an MS-level" you can add details for each MS-level. You should enter details for all the MS-levels used. With a click on the button "Find All Massspecmachines" you get an overview of all your mass spectrometry machines:

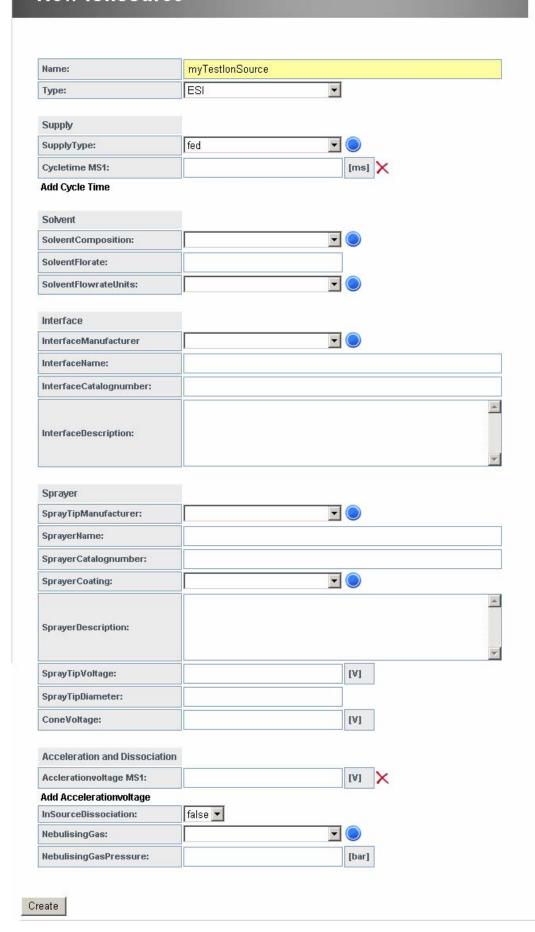


5.2 Ionsource:

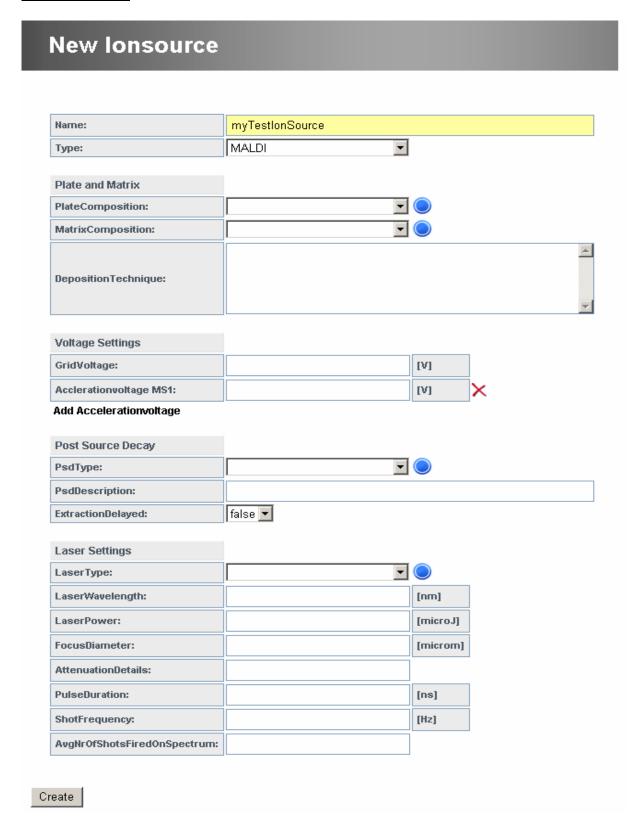
By clicking Mass Spectrometry->Ionsource you reach the ionsource section.



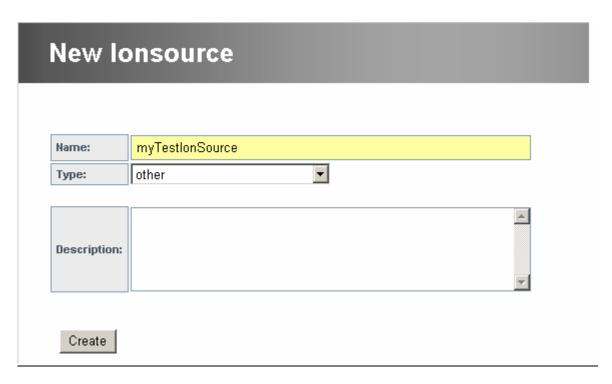
With the "Add Ionsource" you can add new ionsources.


There are 3 types of ionsources (Electrospray chapter 5.2.1, MALDI 5.2.2 and other 5.2.3) available and the input page changes correspondingly.

With a click on the button "Find All Ionsources" you get an overview of all your ionsources:


5.2.1 Electrospray:

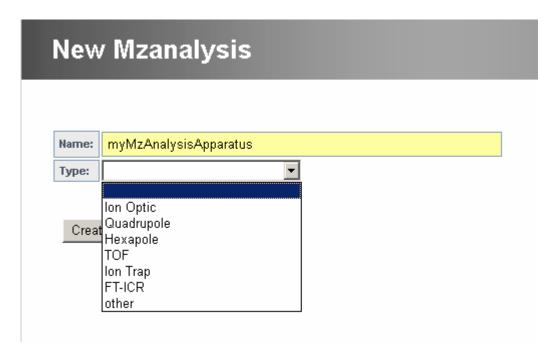
New Ionsource


When you change the type to "ESI" then you get the electro spray input page. When you change the "SupplyType" to "fed" then the link "Add Cycle Time" appears and you can enter cycle times for all your MS-levels. In the section "Aceleration and Dissociation" exists a second link "Add Accelerationvoltage" where you can enter the acceleration voltages for each MS-level.

5.2.2 MALDI:

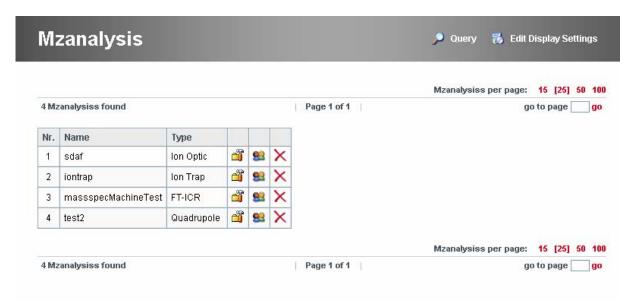
When you change the type to "MALDI" then you get the MALDI input page. With the link "Add Accelerationvoltage" where you can enter the acceleration voltages for each MS-level.

5.2.3 other:

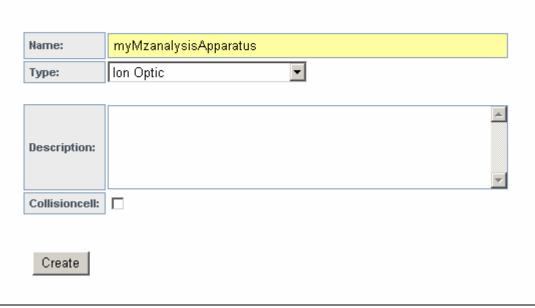

When you change the type to "other" then you get the other ionization input page. There is only an input field for the description of other ionization techniques.

5.3 Mzanalysis:

By clicking Mass Spectrometry->Mzanalyisis you reach the mzanalysis section.



With the "Add Mzanalysis" you can add new mz analysis apparatus.

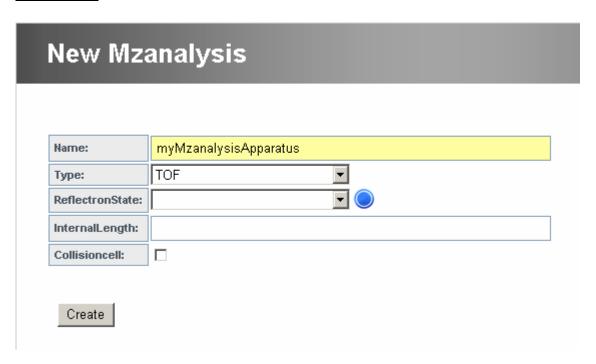

There are 7 types of mz analysis apparati (Ion optic chapter 5.3.1, Quadrupole chapter 5.3.2, Hexapole chapter 5.3.3, TOF chapter 5.3.4, Ion Trap chapter 5.3.5, FT-ICR chapter 5.3.6 and other 5.3.7) available and the input page changes correspondingly.

With a click on the button "Find All Mzanalysis" you get an overview of all your mz analysis apparati:

5.3.1 Ion optic:

New Mzanalysis

For the ion optic only a description field is necessary. All of the mzanalysis types have a check box where you can enter details about the collision cell (see chapter Collision Cell 5.3.8).


5.3.2 Quadrupole:

Same input page like ion optic see 5.3.1.

5.3.3 Hexapole:

Same input page like ion optic see 5.3.1.

5.3.4 TOF:

All of the mzanalysis types have a check box where you can enter details about the collision cell (see chapter Collision Cell 5.3.8).

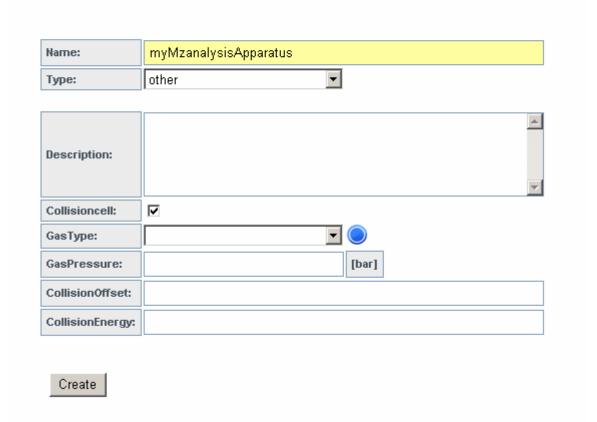
5.3.5 Ion Trap:

New Mzanalysis

Name:	myMzanalysisApparatus	
Туре:	Ion Trap	
GasType:	▼	
GasPressure:		[bar]
RfFrequency:		[Hz]
ExcitationAmplitude:		
IsolationCentre:		
IsolationWidth:		
FinalMsLevel:		
Collisioncell:		

All of the mzanalysis types have a check box where you can enter details about the collision cell (see chapter Collision Cell 5.3.8).

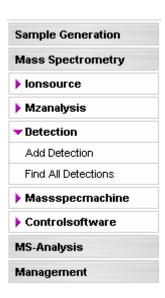
5.3.6 FT-ICR:


Same input page like ion trap see 5.3.5.

5.3.7 Other:

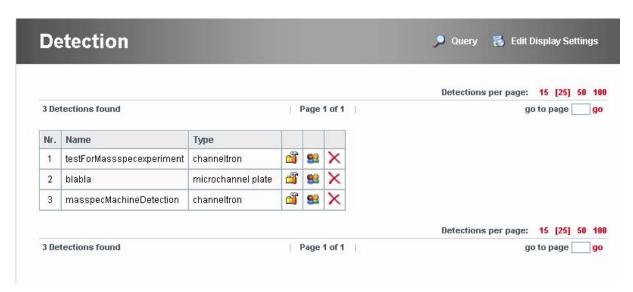
Same input page like ion optic see 5.3.1.

5.3.8 Collision Cell:

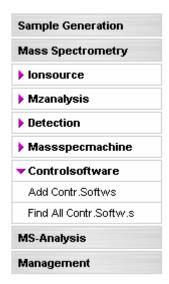

New Mzanalysis

When you check the "Collision cell" check box you can enter information about the collision cell.

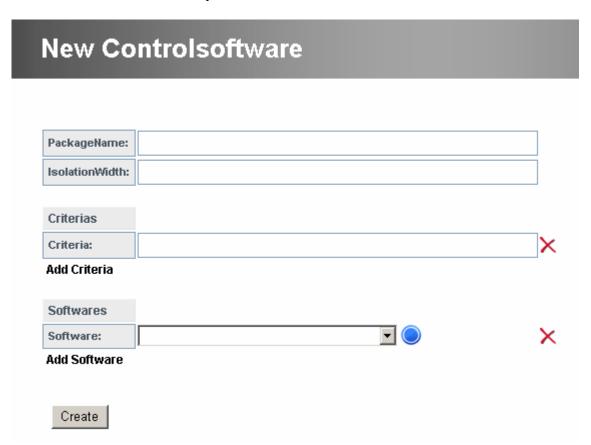
5.4 Detection:


By clicking Mass Spectrometry->Detection you reach the detection section.

With the "Add Detection" you can add a new detector.

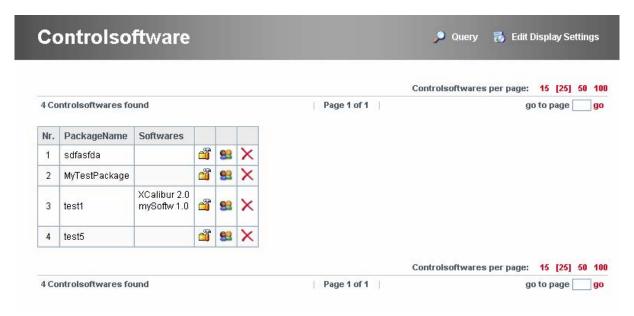

Name: Type: DetectorSensitivity: RateOfDataAcquisition: [GHz]

With a click on the button "Find All Detection" you get an overview of all your detectors:



5.5 Control Software:

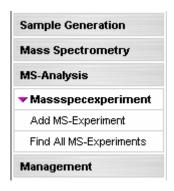
The control software is needed for mass spectrometry experiments (see chapter 6.1 "Mass spectrometry experiment"). By clicking Mass Spectrometry->Controlsoftware you reach the control software section.



With the "Add Contr.Softws" you can add new control software.

With the link "Add Criteria" you can add switching criteria. With the link "Add Software" you can add software, which the control software consists of. If your software is not in the selection list you can add it with the blue button and you come to the create software page (see chapter 2.4 "Software").

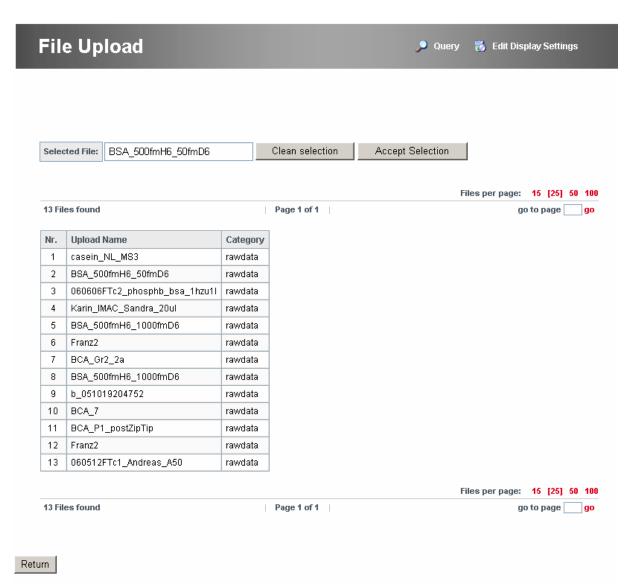
With a click on the button "Find All Contr.Softw.s" you get an overview of all your control software:



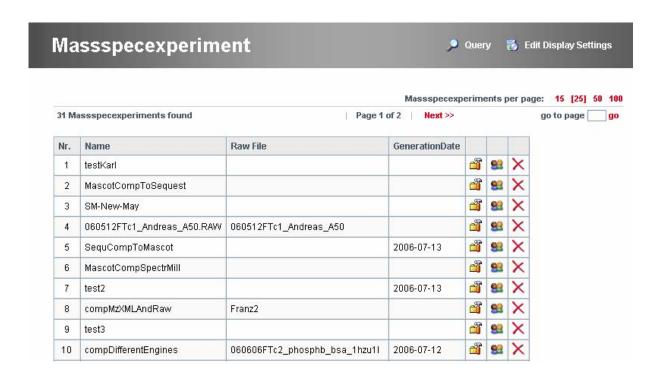
6. Mass Spec Experiment and File Uploading:

This section describes the generation of mass spectrometry experiments and how you can add searches from different search engines to them.

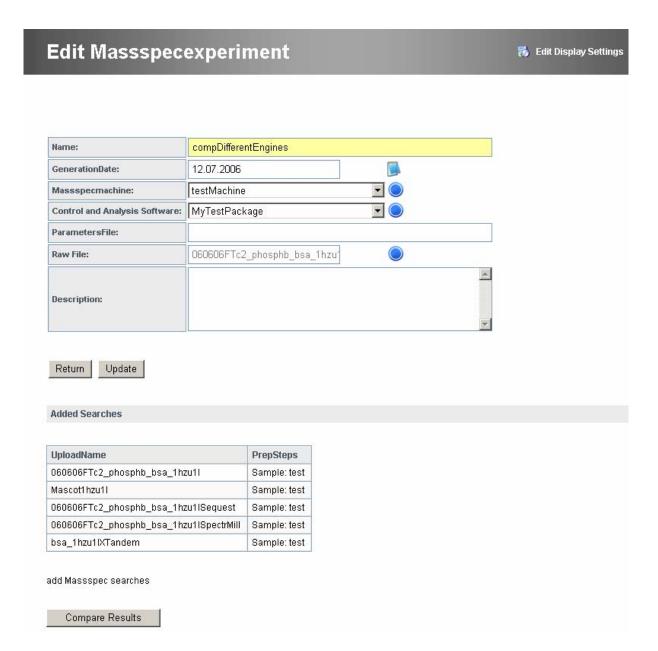
6.1 Mass spectrometry experiment:


By clicking MS-Analysis->Massspecexperiment you reach the mass spectrometry experiment section. This is a central point, where all the information is linked to one another.

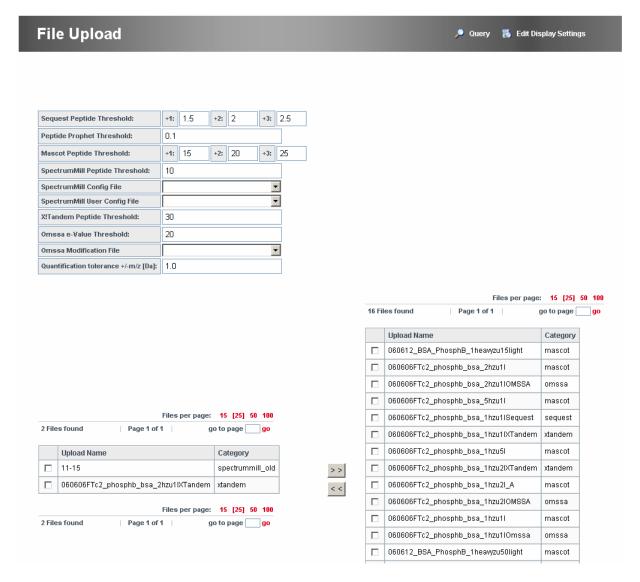
With the "Add MS-Experiment" you can add new mass spectrometry experiment.


New Massspecexperiment 5 Edit Display Setti			ttings	
Name:				
GenerationDate:				
Massspecmachine:				
Control and Analysis Software:				
ParametersFile:				
Raw File:				
Description:		_	_	
Create				

If the desired mass spectrometry machine is not in the select box you can click the blue button on the right side of the select box and you will reach the create page of the mass spectrometry machine (see chapter 5.1 "Mass Spectrometry Machine"). If the desired control and analysis software is not in the select box you can click the blue button on the right side of the select box and you will reach the create page of the control software (see chapter 5.5 "Control Software"). To select a raw File you to click the blue button next to the "Raw File" input field. The following page will appear:


A list of all the raw files uploaded appears. When you click any of the "Upload Names" in the list the name will appear in "Selected File" field. With "Clean selection" you can clean the entry again. With "Accept Selection" this raw file is accepted for that mass spectrometry experiment and will be used for quantitative evaluations, and you return to the create page of mass spectrometry experiment. When you want to add your mass spectrometry experiment to an analyte see chapter 4.7 "Adding of Massspec experiments".

With a click on the button "Find All MS-Experiments" you get an overview of all your mass spectrometry experiments:



6.2 File parsing into MASPECTRAS:

When you click on the name of the mass spectrometry experiment or the edit button you will get the following view of your mass spectrometry experiment:

When you push the link "add Massspec searches" then you will get a page where you can upload you search results from Sequest, Mascot, Spectrum Mill, X! Tandem, or OMSSA.

The thresholds are necessary to remove the most unlikely data. The peptide prophet threshold affects Sequest and Mascot only. For SpectrumMill (new version) you have to specify your Spectrum Mill Config File (smconfig.xml) and when you have modificitations added by yourself the Spectrum Mill User Config File (smconfig.custom.xml). For OMSSA you have to specify the Omssa Modifications File (mods.xml).

The adding and removing of searches to a spot (or band) works the same way like in section 3.2.2 the adding of samples to experiments works.

After the files have been selected the following processes are started (you will see the same steps in the Upload Status Section):

[&]quot;Step 1/5 (Parsing)": Reads the necessary file (or files), filters the data and builds the corresponding value objects

[&]quot;Step 2/5 (Transferring hits)": Stores the found proteins into the database

[&]quot;Step 3/5 (Storing peaklists)": Stores the peaklists and the connected peptidehits and links them to the corresponding proteins

"Step 4/5 (Calculating)": Retrieves the protein sequences from the database (if not already stored), calculates the proteinhit score and the sequence coverage of the hit

"Step 5/5 (Protein Grouping)": Clusters similar proteins together in protein groups.

After these five steps an automatic calculation of a relative quantity for each peptide is started when a raw file for the mass spectrometry experiment is selected (see chapter 6.1 "Mass Spectrometry Experiment"). The progress bar for the calculation starts again at 0%. You can meanwhile validate your data. The view on the data is the same, the only difference is that in the peak-area file you will find no value until the calculation has finished.

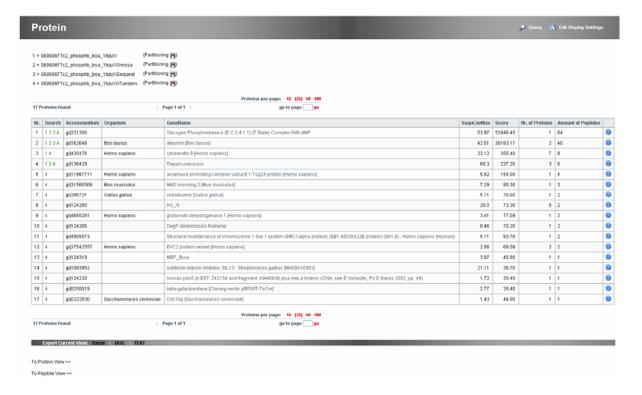
7. Analysis:

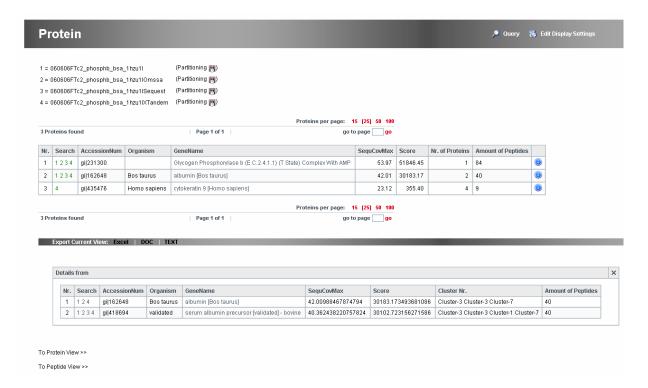
There are two ways to analyse (compare) your data:

- 1. To click directly on the upload name table below the mass spectrometry experiment (see first picture section 6.2 "File parsing into MASPECTRAS")
- 2. To use the

Compare Results button.

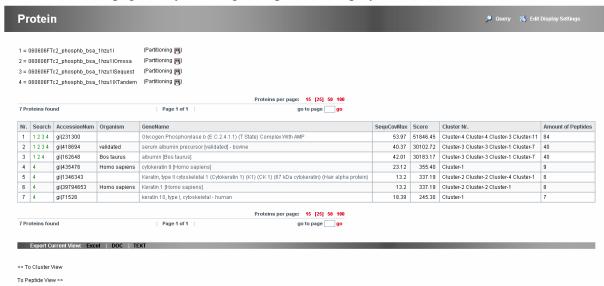
You will find this button when you list your samples from one experiment (then you can compare all searches that are in this experiment) or in a list of the "Uploaded Searches" in the mass spectrometry experiment (see first picture section 6.2 "File parsing into MASPECTRAS). Further buttons of that type are planned at every analyte and at every sample processing step.


When you push this button you can select out of the uploaded searches which ones you want to compare. All of the uploaded searches below this data point are displayed. The preparation steps that have been used are visible there as well.


When you click the , you can edit the mass values of your uploaded modifications. This could be useful for the comparison, because the system could only group together peptides with the same mass shift.

Hydrogen	1.007825	
Carbon	12.0	
Nitrogen	14.00307	
Oxygen	15.99491	
Electron	5.49E-4	
C_term	17.002735	
N_term	1.007825	
Oxidation (M)	15.994904	
NeutralLoss1	0.0	
Phospho (ST)	79.966324	
NeutralLoss2	97.976896	
Phospho (Y)	79.966324	
NeutralLoss3	0.0	
Return Update		

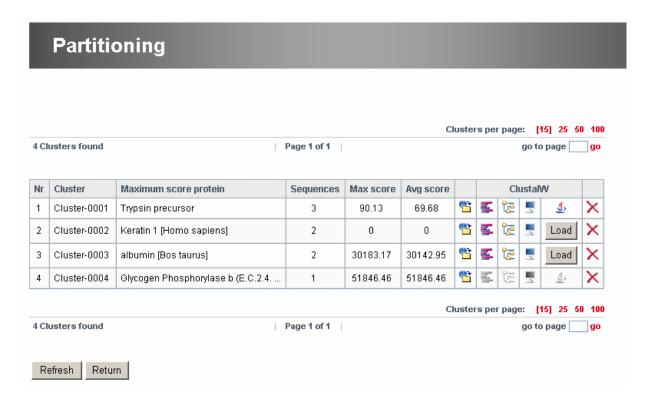
7.1 Protein comparison:



Below the header the searches that you have selected are listed by name and a number is assigned to find it in the table below. Next to the names there is a link in brackets called "Partitioning". With this link you reach a page with a closer description of the cluster (7.2). In the table below the found proteins are listed. When you reach the page the proteins are clustered together. The proteins are sorted by their sequence coverage. The protein with the best sequence coverage is getting displayed as substitute for all the proteins in the cluster. In the "Search" column the number indicates the search where the protein has been found in. You can reach the combined peptide view of the protein when you click on the "GeneName" of the protein (7.3). If you want to see the peptide view of only one search there is a link on the number if the number is green. A red number indicates that this substitute protein was not found with this search but another protein in the cluster has been found with this search. The "Nr. of Proteins" column shows you how many proteins have been put together in one cluster. When you push the blue button you get all proteins of that cluster listed.

The "Cluster Nr." indicates the cluster where the protein is located. The order is the same like the numbers in the "Search" column are ordered.

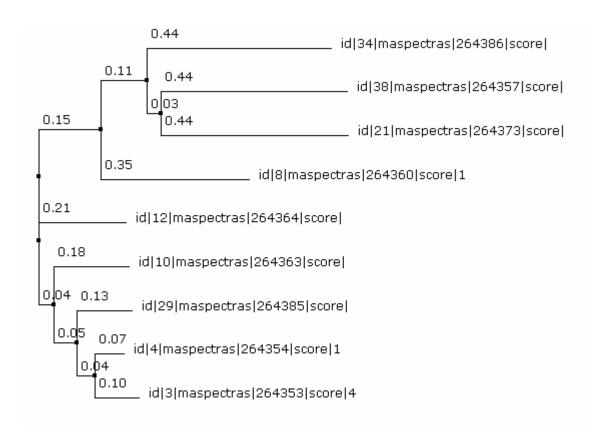
If you don't want to see the clustered view at all you can click on the "To Protein View>>" at the bottom of the page and you will get all proteins displayed.


The "<< To Cluster View" brings you back the cluster view.

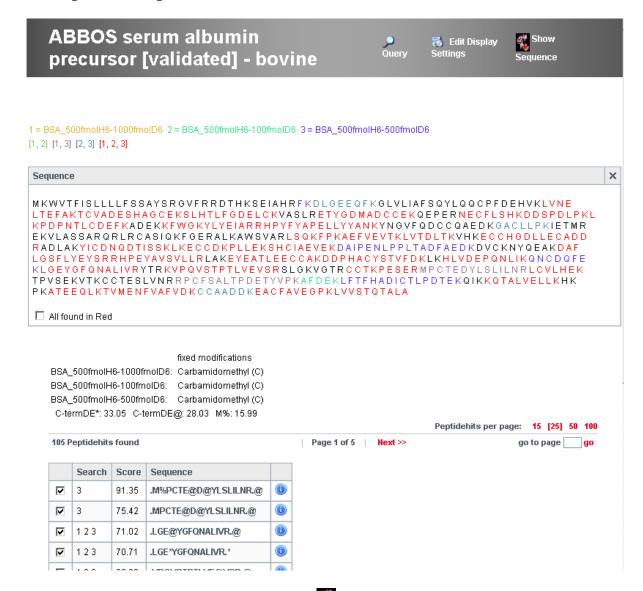
The export bar lets you export the table with the selected columns in different file formats.

The ">> To Peptide View" brings you to the peptide view, where all the peptides of your searches are displayed. It is the same like in 7.3 but the protein sequence is not colored.

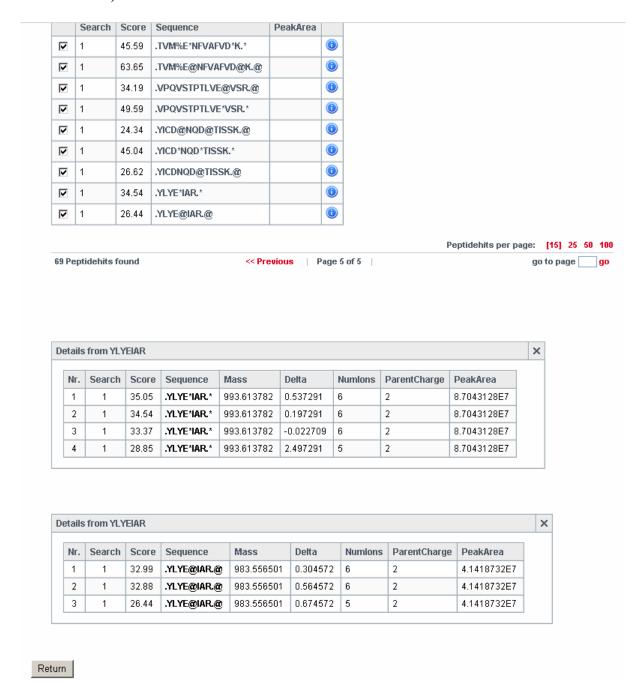

7.2 Cluster (Partitioning):



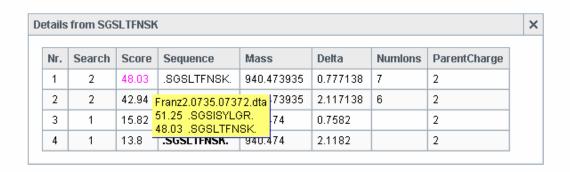
The detailed view of the clusters is reachable by the protein comparisons (7.1). The proteins are sorted by the size of the cluster.


- : Download of the involved proteins in FASTA format
- **=** : Download of the alignment of the proteins
- 🔁: Download the storage of the tree that you can see in Jalview at the end of this section
- The log-file of the alignment
- : The sis a applet itself and when you want to display a big list all of the applets would have to be loaded and takes to much time. Therefore the "Load" button has to be presses to get the corresponding applet.
- 🖆 : Starts Jalview applet to see the alignment

7.3 Peptide comparison:

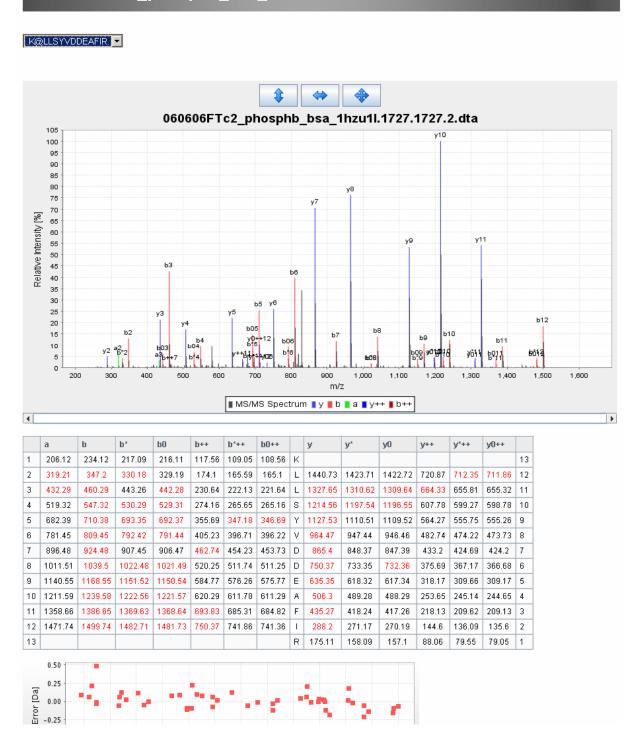

At the header the gene-name is indicated. The button brings the box with the protein sequence if you have closed it. Below the header the searches are listed again, this time in colour in order to recognize them in the protein sequence. Underneath the possible combinations of the searches are colour-encoded as well.

The "Sequence" box has a little checkbox "All found in Red". With this box you can show all found parts of the sequence in red, if one colour is not so well visible for you.


Then the searches are listed again and the fixed modifications are given. At the end of the searches the variable modifications are indicated in one row. The affected amino acids are shown followed by the substitute for the modification in the peptide list and the mass shift after the colon.

Then the found peptides are listed, sorted by the score by default. To indicate in which search the peptide has been found the numbers in the search column are denoted (the same way like in 7.1). If this sequence is a first hit the sequence is in bold letters. When you uncheck the checkbox in front of the peptide this peptide will be removed as found in the "Sequence" box.

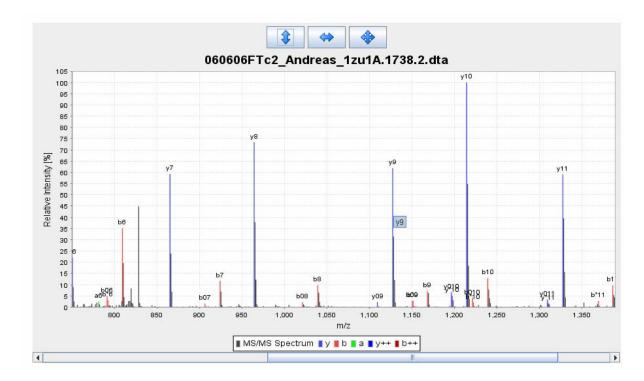
When you push the blue button you get detailed information about this peptide. That means you are on the level of the single searches. Here you get more detailed information about the peptides. On that level the quantitative comparison is possible as well (the "Peak Area" column).



When you hover your mouse above one entry of the column "Search", "Sequence" or "Score" a tooltip with the hits will be displayed.

When you click on one of the entries with the tooltip a window pops up with the corresponding spectrum, so that manual validation is possible (see 7.4).

7.4 Spectrum View:

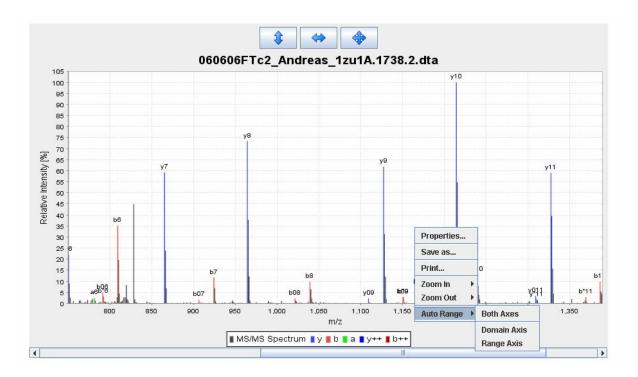


With "Edit Display Settings" you can select the series you want to have displayed. You can save your own display settings like in all the other pages.

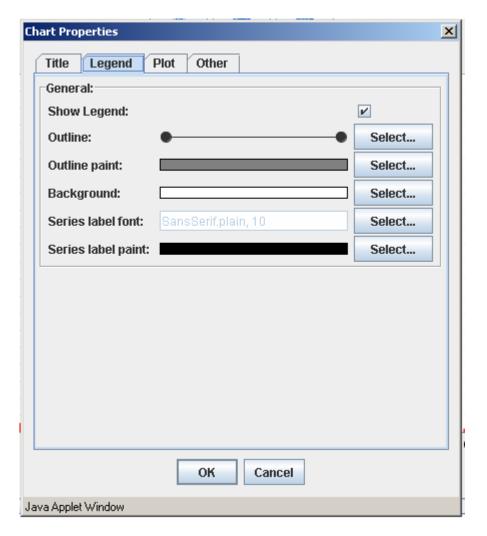
With the select box below the "Edit Display Settings" box you can switch between the found hits.

Then there is a Java Applet with the spectrum (see 7.4.1) and after the spectrum view a box with calculated masses of the fragments is added. At the bottom of the page the mass error of the single hits of the different series is displayed.

7.4.1 The spectrum viewer:


The not assigned peaks are displayed in red. The assigned fragment name is written on the top of the peak. If you hover your mouse above one peak the name will be displayed in a tooltip as well. You can zoom into your spectrum and scroll the x-axis with the bar at the bottom.

: zooms out the y-axis


: zooms out the x-axis

: zooms out both axes

When you first click on the spectrum and then click with the right mouse button you will get a popup window where you have additional features:

You can print your actual zoom scan. In the "Properties..." you can customize your font and other settings.

